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Photoacoustic generation for a spherical absorber with impedance mismatch
with the surrounding media
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Pressure generation in a spherical absorber due to energy deposition from pulsed lasers is studied. For a
variety of conditions, analytical solutions are derived that allow quick computation of exact results. For the
special case of identical acoustic impedance, the pressure transient spreads to the surrounding medium by a
single compressive pulse followed by a tensile pulse at the end of illumination. For the general case of
impedance mismatch, the pressure transient is in the form of a series of dampened compressive and tensile
pressure pulses. In this paper both the amplitude ratio and the sign of consecutive pressure pulses are deter-
mined analytically, and are shown to be dependent upon the impedance mismatch. For laser pulses of duration
much less than the absorber’s characteristic oscillation time, a stress confinement limit is reached for most of
the absorber, but a sharp tensile stress in the core region of the sphere is predicted. This region of high stress
is defined byr<r c , and we show thatr c is proportional to the laser pulse durationt0 . Upon further shortening
of the laser pulse duration, the strength of this tensile stress continues to increase while its spatial distribution
is sharpened. This observation has relevance to a number of experiments where laser-induced pressure tran-
sients cause the absorber to fracture.@S1063-651X~99!08605-5#

PACS number~s!: 42.62.Be, 43.20.1g
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I. INTRODUCTION

With the widespread use of lasers in medical and co
mercial applications, a physical understanding of the inter
tion between the laser pulse and absorbing material is b
desirable and necessary. These investigations have sig
cant interest in terms of the basic physics involved in
nonlinear interplay of optical and acoustic phenomena@1#.
They are also of interest from a practical point of view. Lig
can affect material through diverse physical means wh
include thermal@2–4#, electrical@5,6#, and chemical@7# pro-
cesses. Even within the category of thermal effects, p
cesses involving thermomechanical effects can follow v
different underlying physics from the purely therma
heating-conduction process@3#. In this paper, our interes
focuses on one particular thermomechanical effect, wh
involves temperature rise, pressure buildup, and mechan
expansion. Processes like this are referred to as thermo
tic, in distinction from another thermomechanical process
the optical breakdown which involves evaporation, gene
tion of hot plasmas upon energy absorption, and mechan
expansion@8#.

The theoretical investigation of thermoelastic effects
gan with the two Danilovskaya problems~1950–1952! @9#.
The first Danilovskaya problem is a half-space model w
an abrupt change of temperature on the surface and no
duction between media. The second problem solves the s
model with heat conductance taken into account. In eit
case a pressure transient results due to the abrupt tempe
change. Generalizations of the model to other geometries
temperature distributions have been made@10–13#. In par-
ticular, Hu developed expressions for calculating the pr
sure outside the absorbing region for a spherical abso
@14#. Most of these analytical results, however, are obtain
under the special condition that the absorbing region and
PRE 591063-651X/99/59~5!/5772~18!/$15.00
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surrounding medium are parts of one homogeneous mat
and hence have identical acoustic impedances.

There has been renewed interest in thermoelastic eff
due to the increasing use of shorter laser pulses in biolog
systems. The generation of high pressure is desired in s
cases such as cold ablation, while in other cases it is
cause of unwanted damage@15#. Because of the heteroge
neous nature of, and uneven absorption in, most biosyste
an accurate prediction of pressure transients cannot
achieved without taking into account the difference in aco
tic properties between different parts of the system. A f
mulation with general applicability is needed.

In this paper, we have studied laser interactions with
single spherical uniform absorber surrounded by a trans
ent medium. With the assumption of linear mechanical
sponses by the absorber and medium, an analytic solution
pressure transients is obtained. Heat conduction is not
cluded when the pulse durationt0 is much shorter than char
acteristic heat conduction times. Nonlinearity in propagat
@16#, or the possibility of phase changes such as bubble
mation @17# are not considered within the analytical fram
work. The value of the analytic solution is however, twofol
~1! It gives an explicit relation between the laser input p
rameters, the mechanical properties of the system, and
generated pressure transients.~2! Even for systems with sig-
nificant nonlinearity, the solutions provide a detailed descr
tion of photoacoustic generation at times before the non
earities are manifested, and allow a prediction of nonlin
events, such as a compressive portion of the transient w
would eventually develop into a shock wave, or a tens
stress which might form a cold bubble inside the liquid. Ev
when the nonlinear events occur, there is always a rang
influence outside which the linear solutions are still appro
mately valid@16#. For example, formation of a shock wav
far away from the absorber will not affect the pressu
changes at the absorber until after enough time has ela
5772 ©1999 The American Physical Society
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for the effect of the shock disturbance to travel back to
absorber.

Our analytic solution exhibits the following interestin
features for the pressure transient: For identical impedan
of the absorber and the medium, the pressure trans
spreads to the medium in a compressive pulse, which is
lowed by a tensile pulse. For the general case of impeda
mismatch, the pressure transient is in the form of a serie
pulses of decreasing amplitudes. The damping rate, or
plitude ratio between successive pressure peaks, depen
the mismatch; the more similar the mechanical propert
the faster the pulses decay. For identical densities but dif
ent bulk moduli, the pulses spreading out to the medium
exactly parabolic in shape. If the absorber has a larger mo
lus than the surrounding medium, the consecutive pu
have the same sign; that is, a series of compressive pu
occur during the illumination, followed by a series of tens
pulses after the illumination. If the opposite is true, so t
the medium has a higher bulk modulus, the consecu
pulses have opposite signs; that is, compressive and te
pulses alternate with each other. For the general case of
ferent densities, the mathematical form of the pressur
more complicated. However, the above mentioned featu
remain for moderate density mismatch.

Another interesting feature of this model is the predicti
of a sharp tensile stress in the core of the sphere for l
pulses much shorter than the oscillation time of the absor
Pulses of this length are expected to be in the stress con
ment regime, in which the pressure amplitudes genera
should become independent of pulse length. We find this
to be true in the core region. Fractures near the center o
absorber caused by tensile stress resulting from ultras
laser pulses have been suggested by both numerical cal
tion @18# and experimental observation@19#. In particular, a
microscopic simulation of an absorber by Zhigilei and G
rison showed the fracture effect at the center for ultrash
pulses@20#. The phenomenon, however, is still poorly unde
stood in terms of its relation to the laser-pulse duration a
its apparent violation of the stress confinement notion,
there is a lack of a quantitative basis for its prediction.
analytic model with explicit dependencies on the parame
is very helpful in understanding the various aspects of
phenomenon. Our analytic results show that the sharp ten
stress develops in the core region of the sphere at a del
time after the short laser pulse. The delay time is equal to
time for a wave to travel from the surface of the absor
back into the center. The region is defined byr<r c wherer c
is a critical radius that separates inner and outer reg
within the absorber that have differentr dependencies for the
tensile stress.r c is proportional to the laser pulse duratio
t0 . Upon further shortening of the laser pulse duration
yond this stress confinement limit, the strength of this ten
stress continues to increase while its spatial distribution
sharpened. This is in obvious conflict with the general not
of stress confinement. Our result predicting that pressu
will continue to strengthen as the pulse duration is shorte
will lead to a more careful estimate of the threshold fluen
for mechanical damage for ultrashort laser pulses.

A description of the model we use, as well as an outl
of the steps leading to the analytic solution will be describ
e
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in Sec. II. In Sec. III we discuss our results and the implic
tions for some real systems.

II. MODEL AND ANALYTIC SOLUTION

Our model consists of an uniform spherical absorber s
rounded by a transparent medium. The rate of energy in
per unit massİ e is given by@2#

İ e5
3I 0

4at0r0
F12

1

2aL
2a2 @12e22aaL~112aLa!#G , ~1!

where I 0 is the incident fluence in J/cm2, a is the radius of
the sphere,t0 is the laser pulse duration,r0 is the static
density of the sphere, andaL is the absorption coefficient.

To be consistent with notation, we user ~a Lagrangian! to
denote the initial position of an element of mass, andu(r ,t)
~a Eulerian! its corresponding position vector at timet. In
this notation, an element of mass atu(r ,t) starts atr, i.e.,
u(r ,t50)5r . The mathematical dot operationḟ (t) means a
total time derivative for a fixed mass. The spatial derivat
“ is taken with respect tor while the spatial derivative with
respect to the Eulerian coordinate is explicitly denoted
“u . With this notation, the equation of motion for a poi
inside the sphere is

rü52“uP, ~2!

whereP is the pressure, andr is the time varying density
which is related to the static density by mass conservat
For spherical geometry,

r0r 25u2r
]u

]r
, ~3!

whereu is the radial~only! component ofu. With Eq. ~3!,
the equation of motion now reads

r0r 2ü52u2
“P. ~4!

In this paper, we use the assumption that the bulk mo
lus B and thermal-expansion coefficienta are constant,
which excludes the occurrence of nonlinear propagati
With these approximations of constant mechanical para
eters, the equation of state can be written as

v̇
v

52
Ṗ

B
1aṪ, ~5!

wherev51/r is the specific volume and is related tou by
the continuity equation (v̇5]v/]t1u̇•“uv), which allows
us to write Eq.~5! as

v̇
v

5“u•u̇52
Ṗ

B
1aṪ. ~6!

Energy conservation in a unit volume takes the form

r İ e2“u•~Pu̇!5r~ ėi1ėk!, ~7!

whereėi5Tṡ2Pv̇ is the internal energy rate of change p
unit mass, andek5u̇2/2 is the kinetic energy per unit mass.s
is the specific entropy.
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Use of Eqs.~2! and ~6! in Eq. ~7! shows that, at any
instant, the absorbed laser energy can be expressed a
product of the temperature and the change of entropy of
absorber. This energy is used to raise the temperature o
absorber and change its volume,

İ e5Tṡ5cvṪ1BaTv̇, ~8!

wherecv is the specific heat.
The equation of motion@Eq. ~4!#, the equation of state

@Eq. ~6!#, and the conservation of energy@Eq. ~8!# constitute
the governing equations for the absorber. Similar equati
can be obtained for the medium. The equation of motion

rm0r 2ü52u2
“P. ~9!

The equation of state is

“u•u̇52
Ṗ

Bm
, ~10!

where the subscriptm is for the medium. Equation~10! has
no temperature term because we are looking at times m
shorter than the heat conduction time into the medium. Si
heat conduction is excluded,Bm is the adiabatic bulk modu
lus. The set of equations~4!, ~6!, ~8!, ~9!, and ~10! can be
solved by numerical means subject to the following bou
ary conditions:~1! du is strictly zero atr 50 and`, ~2! u̇ is
zero att50, and~3! u andP are continuous atr 5a.

Even with the assumption of constant mechanical par
eters, the set of equations is still nonlinear due to the sph
cal geometry and the coupling between volume expans
and heating in Eq.~8!. However, unlike the nonlinearity as
sociated with a high and variable compressibility for a gas
liquid, this nonlinearity has little effect on most systems a
conditions of interest. We can assume thatdu5u2r !r and
its corresponding effect on heating is negligible. Droppi
the second term on the right of Eq.~8!, we have

dT5T2T~0!5 f ~r !g~ t !,

g~ t !5
İ e

cv
@ tu~ t !2~ t2t0!u~ t2t0!#, ~11!

wheref (r ) is the spatial distribution of the energy depositi
İ e , andg(t) is its time dependence. We can then expand
set of Eqs.~4!, ~6!, ~8!, ~9!, and~10! to first order indu and
dT. The resulting equations are the following. Forr<a,

r0dü5B“@“•du#2aB“dT,

dP52B“•du1aBdT. ~12a!

For r .a,

rm0dü5Bm“@“•du#,

dP52Bm“•du. ~12b!

Since the system has spherical symmetry,u has no curl,
and we can therefore writedu5“f. The equations now
become the following. Forr<a,

1

c2 f̈5“

2f2adT,
the
e
he

s

ch
e

-

-
ri-
n

r
d

e

dP52r0f̈, ~13a!

For r .a,

1

cm
2 f̈5“

2f,

dP52rm0f̈, ~13b!

wherec25B/r0 andcm
2 5Bm /rm0 . The boundary conditions

are now~1! “f50 at r 50 and` for all t; ~2! f50 and
ḟ50 for t50; and~3! for all t,

“fur 5a25“fur 5a1,

r0f̈ur 5a25rm0f̈ur 5a1.

To solve Eqs.~13a! and ~13b!, we follow the strategy of
Hu @14#, which is to perform a Laplace transformation o
time before applying the Green’s-function method in spa
The direct use of space-time Green’s-function methods
volves multiple integrals, and is unnecessarily more com
cated mathematically.

Denoting the Laplace transform off as F(r ,s)
5L@f(r ,t)# and using the initial boundary condition att
50, we have the following. Forr<a,

“

2F2
s2

c2 F5a f ~r !g~s!,

P~r ,s!52s2r0F. ~14a!

For r .a,

“

2F2
s2

cm
2 F50,

P~r ,s!52s2rm0F, ~14b!

where P(r ,s) and g(s) are the Laplace transforms o
dP(r ,t) andg(t), respectively. The boundary conditions
r 5a are now

“Fur 5a25“Fur 5a1,

r0Fur 5a25rm0Fur 5a1.

The Green’s functionG(r ,r 8) is defined as

F~r ,s!5ag~s!E
0

a

dr8 f ~r 8!G~r ,r 8!, ~15!

where r 8<a, since the energy deposition functionf (r ) is
nonzero only inside the sphere.G(r ,r 8) satisfies the follow-
ing equations:

“

2G~r ,r 8!2
s2

c2 G~r ,r 8!5d~r 2r 8!, r<a,

“

2G~r ,r 8!2
s2

cm
2 G~r ,r 8!5d~r 2r 8!, r .a. ~16!

The Green’s functionG(r ,r 8) is subject to the same
boundary conditions asF. The Green’s function satisfying
the boundary conditions is
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G~r ,r 8!55
g21Q~r 8!

r 8c

sr
sinhS sr

c D , r ,r 8,a

g21Q~r !
r 8c

sr
sinhS sr8

c D , r 8,r ,a

g21
r0r 8a

rm0r
sinhS sr8

c DexpS 2
s

cm
~r 2a! D , r 8,a,r ,

~17!
nc-
tep
l

ly
whereQ is given by

Q~x!5
r0

rm0
S sa

cm
11D sinhS s

c
~a2x! D

1
sa

c
coshS s

c
~a2x! D2sinhS s

c
~a2x! D ,

andg is given as the following:

g5F12
r0

rm0
S sa

cm
11D GsinhS sa

c D2
sa

c
coshS sa

c D ,

~18a!

andg21 is given by the following expansion:

g21522(
k50

`

e2~sa/c!~112k!
A2

k

A1
11k ,

A15h1s1Dr ,

A25h2s1Dr , ~18b!
where we have introduced the parametersh1 , h2 , andDr :

h15~r0a!/~rm0cm!1a/c,

h25~r0a!/~rm0cm!2a/c,

Dr5
r0

rm0
21. ~19!

The solution forF depends on the explicit choice forf (r ).
For uniform absorption throughout the sphere, a step fu
tion is the obvious choice. However, direct use of a s
function with a discontinuity atr 5a leads to mathematica
complications later. To avoid this, we let

f ~r !5 H12exp@2h~a2r !#, r<a
0, r .a, ~20!

and takeh→` later. Such a complication is unfortunate
necessary. Failing to do so will lead to a discontinuity inu.
With f (r ) given by Eq.~20!, we find the following. Forr
<a,
P~r ,s!5Bag~s!1Bag~s!m~s!,
~21a!

m~s!5
c

4gr F ~Z02Z1
2A11Z1

1A2!expS sr

c D1~2Z01Z1
2A12Z1

1A2!expS 2
sr

c D
1~Z2

22Z2
1!A1 expS sa

c
2h~a2r ! D1~2Z2

21Z2
1!A2 expS 2

sa

c
2h~a2r ! D

1~2Z3
21Z3

1!A1 expS s

c
~a2r !2haD1~Z3

22Z3
1!A2 expS 2

s

c
~a2r !2haD G .

For r .a,

P~r ,s!5Bag~s!m~s!,

m~s!5
as

2gr F S 1

s
2Z1

1DexpS 2
s

cm
~r 2a!1

sa

c D1S 2
1

s
1Z1

2DexpS 2
s

cm
~r 2a!2

sa

c D
1~2Z3

21Z3
1!expS 2

s

cm
~r 2a!2haD G , ~21b!

whereZ0 , Z1
6 , Z2

6 , andZ3
6 are defined as

Z05
2a

c
, Z1

65~ah11!/~s6ch!7~ch!/~s6ch!2,
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Z2
65~rh11!/~s6ch!7~ch!/~s6ch!2, Z3

651/~s6ch!7~ch!/~s6ch!2. ~22!

Using the expansion ofg21 in Eq. ~18!, we can recastm(s) into a series:

m~s!5
c

2r (
k50

`

Bk~r ,s!. ~23a!

For r<a,

Bk~r ,s!5
A2

k

A1
11k expS 22k

sa

c D F ~2Z01Z1
2A12Z1

1A2!expS 2
s

c
~a2r ! D

1~Z02Z1
2A11Z1

1A2!expS 2
s

c
~a1r ! D1~Z2

12Z2
2!A1 exp@2h~a2r !#

1~Z2
22Z2

1!A2 expS 22a
s

c
2h~a2r ! D1~Z3

22Z3
1!A1 expS 2

sr

c
2haD

1~2Z3
21Z3

1!A2 expS 2
s

c
~2a2r !2haD G . ~23b!

For r .a,

Bk~r ,s!52s
a

c

A2
k

A1
11k expS 22k

sa

c D F S 2
1

s
1Z1

1DexpS 2
s

cm
~r 2a! D1S 1

s
2Z1

2DexpS 2
s

cm
~r 2a!2

2sa

c D
1~Z3

22Z3
1!expS 2

s

cm
~r 2a!2

sa

c
2haD G . ~23c!
en

th
efi
u

om
p

e

al
The linearities of the system and Laplace transform
able us to write

dP~r ,t !5u~ t !PL~r ,t !2u~ t2t0!PL~r ,t2t0! ~24!

wherePL(r ,t) is the pressure that would be generated if
laser illumination was continued at the same intensity ind
nitely. The effect of turning off the laser is achieved by s
perimposing a negative signal aftert5t0 . This fact is also
obvious from Eq.~11!. The PL(r ,t) is now the following.
For r<a,

PL~r ,t !5Ba
İ e

cv
F t1

c

2r (
k50

`

t* bk~r ,t !G . ~25a!

For r .a,

PL~r ,t !5Ba
İ ec

2rcv
(
k50

`

t* bk~r ,t !, ~25b!

where bk(r ,t)5L21Bk(r ,s), and f (t)* g(t)
5*0

t dt 8 f (t2t8)g(t8) is the convolution off andg.
The general solution for the pressure transient has a c

plicated mathematical form. In some special cases, sim
and illustrative results can be obtained.

~a! rm05r0 and cm5c. In this case, we haveDr5h2
5A250, and Eq.~23! shows that allBk are zero exceptB0 .
B0 is simplified as follows: Forr<a,
-

e
-

-

-
le

B05S 2
1

s
1Z1

2DexpS 2
s

c
~a2r ! D

1S 1

s
2Z1

2DexpS 2
s

c
~a1r ! D

1~2Z2
21Z2

1!exp@2h~a2r !#

1~Z3
22Z3

1!expS 2
s

c
r 2haD . ~26a!

For r .a,

B05S 2
1

s
1Z1

1DexpS 2
s

c
~r 2a! D

1S 1

s
2Z1

2DexpS 2
s

c
~r 1a! D

1~Z3
22Z3

1!expS 2
s

c
r 2haD . ~26b!

The inverse Laplace transform ofB0(r ,s), b0(r ,t) is
given by the following, in which we drop terms which mak
no contribution in the limit ofh→`. For r<a ~assuming
r ,(a2r ), the converse situation does not affect the fin
result!,
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b0~r ,t !55
2h~r 1ct!expFhcS t2

a2r

c D G , 0,t<
r

c

2h~r 1ct!ehc@ t2~a2r !/c#1h~ct2r !ehc@ t2~a1r !/c#,
r

c
,t<

a2r

c

211h~ct2r !expFhcS t2
a1r

c D G , a2r

c
,t<

a1r

c

0,
a1r

c
,t.

~27a!

For r .a,

b0~r ,t !55
0, 0,t<

r 2a

c

211h~r 2ct!expF2hcS t2
r 2a

c D G , r 2a

c
,t<

r

c

211h~ct2r !expFhcS t2
r 1a

c D G , r

c
,t<

r 1a

c

0,
r 1a

c
,t.

~27b!

After computing the convolutionb* t, we obtain simple results for the pressure transient: Forr<a,

PL~r ,t !55
Ba

İ e

cv
t, 0,t<

a2r

c

Ba
İ e

cv
F t2

c

4r S t2
a2r

c D S t1
a1r

c D G , a2r

c
,t<

a1r

c

0,
a1r

c
,t.

~28a!

For r .a,

PL~r ,t !55
0, 0,t<

r 2a

c

Ba
İ ec

4rcv
Fa2

c22S t2
r

cD 2G , r 2a

c
,t<

r 1a

c

0,
r 1a

c
,t.

~28b!

For this special case, the pressure transient outside the sphere Eq.~28b! was previously obtained by Hu in his study of pressu
generation in an aqueous medium by self-focusing and self-defocusing effects@14#.

~b! rm05r0 andcmÞc. Under these conditions, we haveDr50, A15h1s, andA25h2s. All Bk are now nonzero: Forr
<a,

Bk~r ,s!5S h2

h1
D k

expS 22k
sa

c D F S 2
Z0

h1s
1Z1

22
h2

h1
Z1

1DexpS 2
s

c
~a2r ! D1S Z0

h1s
2Z1

21
h2

h1
Z1

1DexpS 2
s

c
~a1r ! D

1~2Z2
21Z2

1!exp@2h~a2r !#1~Z2
22Z2

1!
h2

h1
expS 22a

s

c
2h~a2r ! D1~Z3

22Z3
1!expS 2

sr

c
2haD

1~2Z3
21Z3

1!
h2

h1
expS 2

s

c
~2a2r !2haD G . ~29a!

For r .a,
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Bk~r ,s!5
2a

h1c S h2

h1
D k

expS 22k
sa

c D F S 2
1

s
1Z1

1DexpS 2
s

cm
~r 2a! D1S 1

s
2Z1

2DexpS 2
s

cm
~r 2a!2

2sa

c D
1~Z3

22Z3
1!expS 2

s

cm
~r 2a!2

sa

c
2haD G . ~29b!

The inverse Laplace transform ofBk(r ,s), bk(r ,t) is given by the following~we again drop terms which make n
contribution in the limit of h→`!: For r<a, we define a time parameter that is relevant for each value ofk, tk5t
22k(a/c):

bk~r ,t !5S h2

h1
D k

¦

H 2h~r 1ctk!expFchS tk2
a2r

c D G J , 0,tk<
r

c

hH 2~r 1ctk!expFchS tk2
a2r

c D G1~ctk2r !expFchS tk2
a1r

c D G J ,
r

c
,tk<

a2r

c

H 2
2a

ch1
1

h2

h1
h~r 1ctk22a!expF2chS tk2

a2r

c D G1h~ctk2r !expFchS tk2
a1r

c D G J ,
a2r

c
,tk<

a1r

c

h
h2

h1
H ~r 1ctk22a!expF2chS tk2

a2r

c D G1~r 2ctk12a!expFchS tk2
a1r

c D G J ,
a1r

c
,tk<

2a2r

c

h
h2

h1
H ~2a2r 2ctk!expFchS tk2

3a2r

c D G1~r 2ctk12a!expFchS tk2
a1r

c D G J ,
2a2r

c
,tk<

2a

c

0,
2a

c
,tk .

~30a!

For r .a, the important time parameter is defined astk5t22k(a/c)2@(r 2a)/cm#,

bk~r ,t !5
2a

ch1
S h2

h1
D k5

0, tk<0

@211h~a2ctk!exp~2chtk!#, 0<tk<
a

c

H 211h~ctk2a!expFchS tk2
2a

c D G J ,
a

c
,tk<

2a

c

0,
2a

c
,tk .

~30b!

The pressure transients are given by Eqs.~25a! and ~25b!, and the following convolutionsb* t: For r<a,

c

2r
t* bk52

a

h1
S h2

h1
D k5

0, 0,tk<
a2r

c

1

2r S tk2
a2r

c D S tk1h11h22
a2r

c D ,
a2r

c
,tk<

a1r

c

2

c
~ tk1h2!,

a1r

c
,tk .

~31a!

For r .a,

c

2r
t* bk55

0, tk<0

a

2rh1
S h2

h1
D k

tkS 2a

c
2tkD , 0,tk<

2a

c

0,
2a

c
,tk .

~31b!

~c! Finally, rm0Þr0 and cmÞc. For this most general case, the mathematical form is complicated. The inverse La
transform ofBk(r ,s), bk(r ,t) is given by the following~again dropping terms which make no contribution in the limit
h→`!: For r<a, definetk5t22k(a/c):



b D ,
a1r

c
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2a2r

c

,
2a2r

c
,tk<

2a

c

~32a!

F

b ~32b!

w

z

T

2

r
,tk<

a1r

c

r

c
,tk .

~33a!
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he pressure transients are given by Eqs.~25a! and ~25b!, and the following convolutionsb* t: For r<a,
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For r .a,
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1(s,t) andDk

2(s,t) have the following definitions:

Dk
1~s,t !5

1

k!

]k

]sk F ~h2s1Dr!kest

s G , ~34a!

Dk
2~s,t !5

1

k!

]k

]sk F ~h2s1Dr!kest

s2 G . ~34b!

Applying the Leibnitz differential rule, we find

Dk
1~s,0!5~21!k

Dr
k

sk11 , ~35a!

Dk
2~s,0!5~21!k

Dr
k21

sk12 @ksh21~k11!Dr#, ~35b!

Dk
1,2~s,t !5(

i 50

k
k!

i ! ~k2 i !! 2 h2
i ~h2s1Dr!k2 iestRk2 i

1,2 ~s,t !,

~35c!

Rl
1~s,t !5(

j 50
~21! j

l !

~ l 2 j !!

t l 2 j

sj 11 , ~35d!

Rl
2~s,t !5(

j 50

l

~21! j~ j 11!
l !

~ l 2 j !!

t l 2 j

sj 12 . ~35e!

This completes our analytic solution.

III. RESULTS AND DISCUSSION

The various profiles of positive compressive press
buildup and negative tensile pressure are fundamentally
to only a few physical effects. When the laser is turned on
uniform compressive pressure increase occurs throughou
absorber, and at the same time a tensile wave due to
expansion of the absorber starts to travel in from the surfa
When the pulse is turned off, the uniform compress
buildup stops, but a compressive wave traveling in from
surface commences.

In addition, reflections from the origin occur, first for th
e
ue
a
he
he
e.
e
e

tensile wave, and then at a timet0 later for the compressive
wave. These reflections send waves of the opposite sign
ward. The inward moving waves from the surface and th
reflections superimpose their effects. Furthermore, when
mechanical impedance of the surrounding medium is
matched to the absorber, the outward moving waves are
tially reflected back into the absorber, and partially transm
ted. The net effect of these different pressure transients
pends on their order of occurrence, which is determined
the length of the laser pulse and the point of observation
this section, we analyze the pressure profiles for a variet
cases in which we vary the laser pulse duration compare
the relaxation time of the medium.

The general form@conditions~b! and ~c!# of the pressure
transient is of a series of decaying pulses. The time scal
an individual peaktc is the propagation time of a soun
wave from the surface of the absorber to the center and b
to the surface. Equation~24! shows that the effect of turning
off the laser pulse is equivalent to adding a negative signa
t5t0 . If t0@tc , the positive and negative pressure tra
sients are well separated. On the other hand, for ultras
laser pulsest0!tc , the overlap of the positive and negativ
pressure signals can lead to interesting effects such as te
fracture inside the absorber, which we discuss later.

A. Long laser pulse

In this case, the positive and negative pressure pulses
well separated. The pressure amplitude is proportional to
intensity of the laser~inversely proportional to the laser puls
duration for a fixed fluence!, and outside the absorber th
pressure decays with a 1/r factor due to the spherical geom
etry. During the illumination, the uniform pressure buildu
inside the absorber drives a compressive pressure wave
into the medium, and a tensile wave in toward the absorb
center. At a pointr inside the absorber, the pressure increa
uniformly with time until this tensile wave reaches the loc
tion, at time t5(a2r )/c. The tensile disturbance relieve
the pressure. The tensile wave is reflected at the sphe
origin and the reflected wave, with a sign change that ma
it compressive, reaches the pointr at t5(a1r )/c. At t
52a/c, the wave reflected from the origin reaches the s
face and is partially transmitted out into the medium a
partially reflected at the surface. This finishes one cycle
the pressure pulse. If the absorber and medium are not
fectly matched inB and r, the part of the wave that is re
flected back from the surface will generate another round
propagation in from the surface to the origin and back to
surface. The cycle will continue with decaying amplitude
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At the end of the laser pulset5t0 , the ‘‘onset’’ of the nega-
tive laser signal sets in, and a series of pressure pulses
lar to those generated during the positive laser signal
develop. However, there is a difference in that the comp
sive and tensile attributes will be reversed.

1. rm05r0 and cm5c

For this simplest of cases, the pressure transients in
and outside the absorber are given by Eqs.~24! and Eq.~28!.
There is only a single positive and a single negative pres
pulse for this case, since no reflection will occur at the m
chanically perfectly matched surface boundary. A typi
profile of the transients for the finite focusing effect in wa
is given in Fig. 1. For water, we haver051 g/cm3, cv
54.18 J/~g K!, B52.25 GPa, anda56.931025 K21. We
choose a laser pulse of durationt051027 s and focal size

FIG. 1. Finite focusing effect in water. Gauge pressure~in pas-
cals! vs time ~in units of t0 , the laser pulse duration! for points
inside the focus@~a! r 50.2a, 0.6 a# and outside the focus@~b! r
52a#. The values used for water arer051 g/cm3, cv
54.18 J/~g K!, B52.25 GPa, anda56.931025 K21. For the laser,

we uset051027 s, a530mm, and a deposition rate ofİ e58.84
3108 J/~g s!. A single pressure pulse is observed because of
perfect acoustic match at surface boundary which precludes su
reflections.
i-
ll
s-

de

re
-
l
r

a530mm. Thentc52a/c5431028 s, which is about half
of t0 . The laser pulse carries an energy of 1025 J, so that the
resulting İ e58.843108 J/~g s!. The resulting pressure tran
sients as a function of time are plotted for points inside
focus, equivalent to the absorbing region in our treatm
@Fig. 1~a!: r 50.2a,0.6a# and outside the focus@Fig. 1~b!: r
52a#.

For a point inside the focal sphere, the pressure increa
linearly with time according to Eq.~28a! until the relieving
tensile wave reaches it att5(a2r )/c. The tensile wave
comes as a result of surface expansion due to the initial
ternal pressure buildup. The pressure then drops para
cally according to Eq.~28a!. The tensile wave continues in
ward, and is reflected at the spherical origin. The reflec
wave undergoes an amplitude inversion and is now comp
sive, but is not attenuated by the reflection at the origin. T
reflected compressive wave moves outward and reach
point r at t5(a1r )/c and causes cancellation of all pressu
disturbances. The pressure stays at zero aftert5(a1r )/c.
From Fig. 1~a! and Eq.~28a!, we see that the further th
point is inside, the sharper the pressure drop to zero.

For a point outside the sphere,r .a, the pressure stays a
zero until the compressive pressure transient, origina
from the surface, arrives att5(r 2a)/c. The pressure then
increases and decreases parabolically according to Eq.~28b!
@see Fig. 1~b!#. At t5(a1r )/c, the reflected wave from the
origin arrives and cancels the pressure disturbance. The p
sure stays at zero aftert5(a1r )/c until the laser is turned
off.

At t5t0 , the onset of the negative laser signal begins
shown in Fig. 1. The compressive aspect of the press
transient has been changed into tensile.

2. rm05r0 and cmÞc

For this case, because of the sound speed mismatch a
boundary, the reflected tensile wave from the origin will su
fer another reflection at the surface boundary att52a/c.
This surface reflection generates another round of propa
tion and reflection at the origin and a series of press
pulses result. A strict definition of a pressure pulse for t
case can be made as follows. From Eq.~31!, we define the
kth pulse for a pointr outside the absorber as the pressu
transient for times between 2k(a/c)1@(r 2a)/cm#<t,2(k
11)(a/c)1@(r 2a)/cm#, k50,1,2, . . . . The kth pulse,
originating from the surface boundary atr 5a, starts att
52k(a/c) and lasts for an interval of 2a/c. It propagates
from the surface both outward and inward, but with differe
sound speeds.

We note from Eq.~31! that each pulse is exactly parabol
as a function of time outside the absorber while inside
absorber, the pulse is comprised of a parabolic portion
tween t52k(a/c)1@(a2r )/c# and t52k(a/c)1@(a
1r )/c# and two linear portions outside the parabolic portio
At points outside the absorber, the partial transmittance
the boundary causes consecutive pulses to decrease in
nitude with a ratio

h2

h1
5

c2cm

c1cm
. ~36!
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ce
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From Eq. ~36!, we see that consecutive pulses have
same sign ifc is greater thancm . Since we are examining th
case forrm05r0 , that means the absorber has a larger b
modulus than the surrounding medium. If the opposite
true, consecutive pulses have opposite sign from each o
In the latter case, the pressure transient spreading to the
dium has compressive and tensile pulses alternating
each other. The closer the two sound speeds, the faste
pulses decay.

It is also important to emphasize that the duration of e
pressure peak in the surrounding medium~Fig. 2! is tc

52a/c, wherec is the speed of sound in the absorber. T
has important ramifications because it affords a method
experimentally determining the bulk modulusB for particles
that are small enough to present difficulties in measur
their pressures directly. The duration of a pressure peaktc is
for a pressure signal at a locationoutsidethe absorber, which
makes it easier to measure using an acoustic transduce@8#
than it would be close to the heated absorber. A meas
ment of tc , along with knowledge of a particle’s radiusa,
gives the speed of sound in the particle. When combi
with the density of the particle, the bulk modulus is det
mined. In addition, the amplitudes of the pressures both
side and outside the absorber are proportional toa, the ther-
mal expansion coefficient of the absorber. Therefore, oncB
is determined by measuringtc , a measurement of the am
plitude of the pressure outside the absorber, where it is ea
to make such measurements, allows a determination ofa.

To illustrate the profile of the transient for the conditio
under discussion, we study the biological system of a m
anosome immersed in a waterlike medium. The melanos
is a spheroidal composite of melanin found in the reti
pigment epithelial~RPE! cells of the eye@2–4#. The system
is currently under intensive investigations due to its la
safety and medical applications. The melanosome is usu
modeled as a highly absorbing sphere withaL
51000 cm21, a51 mm, r051.35 g/cm3, and cv
52.51 J/~g K! while the medium can be approximated as w
ter. We use a laser with pulse durationt05431029 s and
incident fluenceI 051 J/cm2, which is known to result in
damage to RPE cells@2,3#. Use of Eq.~1! gives an absorp-
tion rate of İ e51.7231011J/~g s!. To fit with the conditions
we are investigating at this point in the paper ofrm05r0 ,
we approximate the density of melanosome to be tha
water, and user051 g/cm3. Reliable numbers for the bulk
modulusB and bulk thermal expansion coefficienta of the
melanosome have not yet been reported. In order to cont
with the calculations, we use graphite as a substitute bec
of their chemical similarity@21#, and setB539.4 GPa and
a52.9831025 K21. Accurate estimates of these numbe
may come from future experiments employing the pres
theory and results discussed in the previous paragraph.

A typical profile of pressure transients for this system
shown in Fig. 2. Pressure transients are plotted as a func
of time for points inside the melanosome@Fig. 2~a!: r
50.6a# and outside the melanosome@Fig. 2~b!: r 52a#.
From Fig. 2~b!, we see that consecutive pulses have the sa
sign sincec.cm in this case.

To illustrate the case ofc,cm , we propose the following
experiment that is easily realizable in the laboratory: an
e

k
s
er.
e-

th
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h

s
r

g

e-

d
-
-

ier

l-
e

l

r
lly

-

f

ue
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e

-

sorbing aqueous solution of potassium chromate (K2CrO4)
embedded in a spherical cavity inside a transparent solid
dium. A solution of 35 mg of potassium chromate per cub
centimeter yields an absorption coefficient ofaL
51000 cm21 @22#. The mechanical properties are littl
changed from that of water, so we user051 g/cm3, cv
54.18 J/~g K!, B52.25 GPa, anda56.931025 K21. For
the solid medium, we use polystyrene, which transmits ab
90% of visible light@23#. Typical values areBm57 GPa and
rm0;1.19– 1.20 g/cm3 @23#, which we approximate as tha

FIG. 2. Pressure generation in a melanosome surrounded
water medium, induced by a laser oft05431029 s and I 0

51 J/cm2. Typical values used for the melanosome areaL

51000 cm21, a51 mm, r051.35 g/cm3 ~approximated for this
case as 1.0 g/cm3, the value of water!, and cv52.51 J/~g K!. The
bulk modulus and bulk thermal expansion coefficient used for
melanosome are those of graphite:B539.4 GPa anda52.98
31025 K21. Gauge pressure~in pascals! vs time~in units oft0 , the
laser pulse duration! for a point inside the melanosome@~a! r
50.6a# and outside the melanosome@~b! r 52a#. Consecutive
pulses outside the melanosome have the same sign sincec.cm .
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of water. We choose the size of the solution to havea
50.1 mm, a laser with pulse durationt051026 s and fluence
I 051 J/cm2 ~low enough not to evaporate the solution!. In
Fig. 3, we show for such an experiment the expected p
sure transients plotted as a function of time for a point ins
the solution@Fig. 3~a!: r 50.6a#, and outside the solution
@Fig. 3~b!: r 52a#. It is seen in Fig. 3~b! that outside the
solution, the consecutive pulses have opposite signs foc
,cm . That is, the medium experiences compressive and
sile pulses alternating with each other.

FIG. 3. Pressure generation in a potassium chromate solu
surrounded by polystyrene, induced by a laser oft051026 s and
I 051 J/cm2. For a solution of 35 mg of potassium chromate p
cubic centimeter,aL51000 cm21. For the solution we use the me
chanical properties of water:a50.1 mm, r051 g/cm3, cv
54.18 J/~g K!, B52.25 GPa, anda56.931025 K21. For polysty-
rene, we useBm57 GPa andrm0;1.19– 1.20 g/cm3'1.0 g/cm3.
Gauge pressure~in pascals! vs time ~in units of t0 , the laser pulse
duration! for a point inside the absorbing solution@~a! r 50.6a# and
a point in the solid medium@~b! r 52a#. Consecutive pulses in th
medium have opposite signs sincec,cm .
s-
e

n-

3. rm0Þr0 and cmÞc

For this most general case, the pressure transient h
complicated mathematical form given by Eqs.~24!, ~25!, and
~33!. The actual profile of pressure transients however
very similar to that in Sec. II A2 (rm05r0 andcmÞc), just
discussed, if the densities of the absorber and medium do
differ by much.

Again, we use the system of a melanosome immersed
waterlike medium for demonstration. This time we use
realisticr051.35 g/cm3, rather than approximating it to hav
the same value as water. In Fig. 4, we show for such
system the pressure transients plotted as a function of
for a point inside the melanosome@Fig. 4~a!: r 50.6a# and
outside the melanosome@Fig. 4~c!: r 52a#. Except for the
difference in the density, all other values for the melanoso
and the laser are the same as those used in Fig. 2.
plotted are the pressure transients calculated directly f
Eqs. ~4!, ~6!, ~8!, ~9!, and ~10! using the Lax algorithm of
numerical solution of the partial differential equation~PDE!
@24# that allows the computation of the pressure transie
without going through the linearization and decoupling us
to obtain the analytical results. We see from Fig. 4 that
numerical and analytical calculations agree perfectly for t
system and conditions. This agreement, as well as agree
that we found for other values of the parameters, justifies
analytic approach, and shows that nonlinearities associ
with the spherical geometry and the coupling of volume e
pansion and heating are negligible for these systems.
analytic method has the advantage of being much quicker
computations. Comparing Figs. 2 and 4, we find that
pressure transients are very similar to each other, altho
the pulses in Fig. 4 are no longer strictly parabolic.

B. Ultrashort laser pulse

When the laser pulse hast0!tc , the overlap of the pres
sure transients produced by the positive laser signal
negative laser signal that turns off the laser, leads to a n
phenomenon. We note that for a long laser pulse, when
positive and negative pressure signals are well separated
size of the pressure transients at a given point and the m
mum pressure attained during the transientsudPumax are in-
versely proportional to the laser pulse durationt0 . ~Note that

İ e5I e /t0 , whereI e is the total energy input per unit mass!
It is postulated, however, thatudPumax will stop increasing
and approach a limit whent0 becomes as small as som
mechanical relaxation time of the system such astc . When
t0 is below this relaxation time, the system has no time
relax and expand during the laser pulse duration, and
input energy is used with maximum efficiency in the gene
tion of pressure. This concept, called the stress confinem
condition, has often been used in estimates of the upper l
for pressure amplitudes for a given energy input@22#. In our
case, this would imply thatudPumax would become indepen
dent oft0 whent0!tc .

Conditions which might exhibit stress confinement ha
been used in recent experiments as well as numerical w
@18,19#. The experiments have shown fractured melanoso
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particles for ultrashort pulses@19#. The fractures are believe
to be caused by a large tensile stress in the absorber.
microscopic simulation of a two-dimensional absorber, Zh
ilei and Garrison@20# showed tensile fracture around th
core of the absorber for short laser pulses. As opposed to
idea of stress confinement, these investigations suggest
pressure amplitudes continue to increase ast0 is shortened,
even whent0!tc . To determine if a stress confinement r
gime occurs or not, a more careful study of the press

FIG. 4. Pressure generation in a melanosome surrounded
water medium, induced by a laser oft05431029 s and I 0

51 J/cm2. Values used for the melanosome areaL51000 cm21,
a51 mm, r051.35 g/cm3, andcv52.51 J/~g K!. The bulk modulus
and bulk thermal expansion coefficient used are those of grap
B539.4 GPa anda52.9831025 K21. Gauge pressure~in pascals!
vs time ~in units of t0 , the laser pulse duration! for a point inside
the melanosome@~a! r 50.6a# and a point outside the melanosom
@~b! r 52a#. Unlike Fig. 2, the actual value ofr0 has been used
Also included is the results of the numerical solution which tak
into account all the coupled terms in Eqs.~4!, ~6!, ~8!, ~9!, and~10!.
The analytic and numerical solutions are in excellent agreemen
a
-

he
hat

re

transients caused by ultrashort laser pulses is needed.
analytic solution, based on macroscopic continuum mech
ics, provides an opportunity for this investigation.

Our analytic solution reveals that although the maximu
stress can be safely estimated by the stress confinement
dition during the laser pulse, a tensile stress develops late
t5tc/2 that relieves the pressure. However, there is a reg
r ,r c inside the absorber where theudPumax continues to
increase ast0 is reduced, even whent0!tc . In this region,
the concept of stress confinement does not hold for the
sile stress. The value ofr c , which we call the critical radius
is proportional tot0 , and also marks a transition in ther
dependence of theudPumax. This phenomenon should occu
in all systems with a confined absorber where the relax
tensile pressure pulse from the outer part of the abso
converges into the geometric center. We also expect the
fect to be less pronounced in lower dimensional systems
supported by the numerical study of Paltauf and Schm
Kloiber @18# on a two-dimensional system.

We now demonstrate this phenomenon assumingrm0
5r0 andcm5c. This case has the simplest mathematics a
is sufficient to exhibit the effect of interest. First we obser
from Eqs. ~25! and ~28! that, for long laser pulses, ther
dependence ofudPumax changes inside the absorber, rath
than at the surface: Forr .a/2,

udPumaxS t5
r

cD5
BaI ea

2

4rccvt0
;

1

t0r
. ~37a!

For 0,r<a/2,

udPumaxS t5
a2r

c D5
BaI e~a2r !

ccvt0
;

a2r

t0
, ~37b!

where the dependencies ont0 andr are explicitly displayed.
Note that, for a long laser pulse,udPumax is inversely propor-
tional to t0 . Also, the critical radiusr c5a/2 marks a transi-
tion of r-dependence from 1/r to a linear dependencea2r .
Physically, such a transition is necessary as we go tow
smallerr to avoid infinite pressures at the origin.

For ultrashort laser pulsest0!tc , the pressure transient
at a particular point are different from those generated
longer laser pulses due to the overlap of the positive
negative signals. Let us begin with the caser .a. For a point
r outside the absorber, a pressure transient reaches itt
5(r 2a)/c. Before the acoustic pressure pulse is over,
transient created by the negative laser pulse that turns of
laser att5t0 also arrives att5t01@(r 2a)/c#. The effects
produced by the two signals tend to cancel each other,
not completely. Detailed analysis using Eqs.~24!, ~25!, and
~28! shows that, forr .a,

a

te:
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dP~r ,t !5Ba
I ec

4rcv

¦

0, 0,t<
r 2a

c

1

t0
S t2

r 2a

c D S r 1a

c
2t D ,

r 2a

c
,t<t01

r 2a

c

S t022t1
2r

c D , t01
r 2a

c
,t<

r 1a

c

1

t0
S t2t02

r 2a

c D S t2t02
r 1a

c D ,
r 1a

c
,t<t01

r 1a

c

0, t01
r 1a

c
,t.

~38!
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Figure 5 is the profile of the pressure signal outside
focal region (r 52a) for the same finite focusing effect i
water as in Fig. 1. However, in Fig. 5 we use a laser wit
much shorter pulse duration than in Fig. 1. The pulse du
tion in Fig. 5 ist051029 s, which is much shorter than th
system’s mechanical relaxation time oftc5431028 s. Un-
der these conditions oft0!tc , the negative tensile pressu
pulse of Fig. 1~b! occurs before the positive compressi
pulse has finished, and Fig. 5 can be viewed as the overla
the positive and negative pulses. The negative tensile w
travels out from the surface starting att0 when the laser is
turned off. Due to their width, the time between the compr
sive maximum of the peak and the tensile minimum of

FIG. 5. Finite focusing effect in water for ultrashort laser puls
Gauge pressure~in pascals! vs time ~in units of t0 , the laser pulse
duration! for a point outside the focusr 52a. Values used for water
are r051 g/cm3, cv54.18 J/~g K!, B52.25 GPa, anda56.9
31025 K21. The laser pulse, with a focal size ofa530mm, carries
the same fixed energy of 1025 J as in Fig. 1. Under these condition
of t0!tc , the negative tensile pressure pulse occurs before
positive compressive pulse has finished, and the resulting tran
can be viewed as the overlap of the positive and negative pu
The time between the compressive peak and the tensile troug
approximately equal totc52a/c.
e

a
-

of
ve

-
e

trough is equal totc2t0'tc . This is especially important in
considering material damage or failure, since the forces
are created depend on the rate of change of the pres
Equally important is the result that the rise time to the co
pressive peak, and the decay time from the tensile trough
now on the order oft0 . Therefore, as the laser pulse durati
is shortened, greater forces occur, and material failure in
medium becomes more likely.

We see from Eq.~38! that the maximum pressures occ
at t5t01@(r 2a)/c# and t5(r 1a)/c ~corresponding, re-
spectively, to compressive and tensile!. For the ultrashortt0
limit,

udPumax5Ba
I ec

4rcv
S 2a

c
2t0D;

1

r
. ~39!

We see from Eq.~39! that udPumax indeed approaches a lim
whent0 decreases. Forr .a, the stress confinement limit i
valid and ther dependence ofudPumax is 1/r .

For r<a and deep in the sphere, the pressure at a poir
first increases linearly with time due to the uniform heatin
The pressure stops building up when the laser is turned
and remains at a constant value. Meanwhile, the tensile w
associated with the positive laser signal due to the expan
at the surface is moving inward from the surface and arri
at t5(a2r )/c. When this tensile wave reaches the pointr, it
starts to reduce the pressure at a large rate which increas
1/t0 . It then takes 2r /c for this wave to travel to the origin
and reflect back as a compressive wave. During this time,
tensile stress can reach large negative values that can fra
the absorber. The shorter the laser pulse, the greater the
sile stress attained. Once the compressive reflection arr
the tensile stress continues to increase but at a much slo
rate.

On the other hand, for larger values ofr inside the mel-
anosome, where the rate of increasing tensile stress is n
large, the tensile stress may not have time to build up t
large value. This is because starting att0 when the laser is
turned off, equivalent to a negative laser fluence, a comp
sive wave set off by the negative laser signal starts to tra
in from the surface. The compressive wave from the surf
will arrive at r at t5t01@(a2r )/c#. If this compressive
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wave arrives before the compressive reflection from the
gin returns tor at t5(a1r )/c, the tensile stress does n
have enough time to build up to a large value. We define
critical radiusr c as the radius where the compressive wa
traveling in from the surface that is associated with the ne
tive laser signal, arrives at the same instant that the comp
sive wave from the positive laser signal returns back a
reflection at the origin.r c separates region I (r<r c), where
the first transient from the positive laser returns back fi
and region II (r .r c), where the compressive wave travelin
in from the surface that is associated with the negative la
i-

e
,

a-
s-
r

t,

er

signal, arrives first.r c occurs for a value ofr such that (a
1r )/c is equal tot01@(a2r )/c#, and gives

r c5
ct0

2
. ~40!

We will show that r c also marks the transition for ther
dependence ofudPumax. Furthermore, forr<r c , udPumax is
proportional to 1/t0 even for ultrashort pulses, but in regio
II we show thatudPumax is only weakly dependent ont0 .
Using Eqs.~24!, ~25!, and ~28!, for r<a we have the fol-
lowing. Region I (r<r c),
dP~r ,t !5Ba
I e

cv

¦

t

t0
, 0,t<t0

1, t0,t<
a2r

c

12
c

4r t0
S t2

a2r

c D S t1
a1r

c D ,
a2r

c
,t<

a1r

c

12
t

t0
,

a1r

c
,t<t01

a2r

c

c

4r t0
S t2t02

a2r

c D S t2t01
a1r

c D2
t

t0
11, t01

a2r

c
,t<t01

a1r

c

0, t01
a1r

c
,t.

~41a!

Region II (r .r c),

dP~r ,t !5Ba
I e

cv

¦

t

t0
, 0,t<t0

1, t0,t<
a2r

c

12
c

4r t0
S t2

a2r

c D S t1
a1r

c D ,
a2r

c
,t<t01

a2r

c

12
c

4r S 2t2t01
2r

c D , t01
a2r

c
,t<

a1r

c

c

4r t0
S t2t02

a2r

c D S t2t01
a1r

c D2
t

t0
11,

a1r

c
,t<t01

a1r

c

0, t01
a1r

c
,t.

~41b!
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Detailed analysis shows that, in region I, the maximum t
sile stress occurs att5t01@(a2r )/c#. For the ultrashort
t0!tc limit @as well as the limit of smallr since r<r c
;t0 from Eq. ~40!#, we have

udPumax5Ba~a2r !
I e

ccvt0
;

1

t0
. ~42a!

In region II, a maximum tensile stress occurs att5@(a
1r )/c#. In the ultrashortt0 limit, we have

udPumax5Ba
I ec

4rcv
S 2a

c
2t0D;

1

r
. ~42b!

From Eq. ~42!, we see that, while in region IIudPumax
becomes independent oft0 ast0 goes toward zero, in region
I udPumax continues to increase as we reducet0 . The r de-
pendence ofudPumax in region I is linear, and becomes inde
pendent ofr at ultrashort laser pulses asr c approaches zero
as opposed to the 1/r dependence in region II.r c , being
proportional tot0 , decreases ast0 decreases. This allow
the boundary of region II to move inward toward smallerr.
These inner locations of region II (r .r c but small r! con-
tinue to experience highudPumax when they switch from be-
ing in region I to region II, because the tensile stress
region II depends on 1/r . However, the tensile stress in re
gion I continues to be a little higher, with the maximum
the origin beinga/(a2r c) larger than atr c . The picture
presented by this model in which the tensile stress at
center continues to increase ast0 decreases is quite differen
from the idea of a stress confinement limit, and should se
as a new approach for calculating the acoustic damage in
biological systems.

To illustrate the effect, we use the example of the fin
focusing effect in water shown in Fig. 1. Again we use
focal size ofa530mm andtc52a/c5431028 s. The laser
pulse carries the same fixed energy of 1025 J as in Fig. 1.
However, we use a series of much shorter pulses in a
creasing order:t051028, 531029, 231029, and 1029 s.
The first laser pulset051028 s has ar c5(t0 /tc)a50.25a
while the last one has ar c50.025a. We choose two points
inside the absorber:r 50.01a, which is in region I for every
laser pulse; andr 50.3a, which is in region II for every laser
pulse. The pressures as a function of time for these twor’s
are shown in Fig. 6. For comparison, we use the same
unit of time for all laser pulses.

From Fig. 6, we see that in region I the tensile stre
keeps increasing with decreasing laser pulse duration, w
in region II the maximum of the stress amplitude chang
very little from t051028– 1029 s. Notice that at t0
51028 s, the amplitudes atr 50.01a and 0.3a are of the
same order, but att051029 s, they differ by an order of
magnitude.

This phenomenon is quite general. In Fig. 7, we sh
results for the general conditions whererm0Þr0 and cm
-

n

t

e

e
al

e-

al

s
ile
s
Þc. This is the same laser-melanosome system describe
Fig. 4, which has atc52a/c53.7310210s. We choose a
laser witht0510211s, which givesr c50.027a. We choose
an observation point atr 50.01a which is inside region I.
Figure 7 shows that under these general conditions, a se
of tensile spikes appears with an interval oftc between
spikes. The appearance of a series of tensile spikes i
contrast with the special case ofrm05r0 andcm5c, where

FIG. 6. Finite focusing effect in water for ultrashort laser puls
In decreasing order of pulse durationt051028, 531029,
231029, and 1029 s. The gauge pressure~in pascals! vs time ~in
seconds! for a point in region I (r<r c) at r 50.01a, and for a point
in region II (r .r c) at r 50.3a. Values used for water are
r051 g/cm3, cv54.18 J/~g K!, B52.25 GPa, and a56.9
31025 K21. The laser pulse, with a focal size ofa530mm, carries
the same fixed energy of 1025 J as in Fig. 1. In region I, the tensile
stress continues to increase with decreasing laser pulse dura
while in region II the stress amplitude changes very little fromt0

51028 to 1029 s.
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only a single tensile spike is observed.
Finally, we mention that in the limit oft050, the tensile

stress appears to approach infinity, which is unphysi
Eventually, as the laser pulse duration is shortened, non
earities will play a role. The critical radiusr c , which is
proportional tot0 in Eq. ~40!, also has a lower bound, whic
we presume to be the microscopic spacing. Continuum
chanics, upon which the present treatment is based,
when the important scale is comparable to atomic or mole
lar spacings. It is then necessary to ask about the fate o
large tensile stress whenr c approaches atomic spacing

FIG. 7. Pressure generation in a melanosome surrounded
water medium, induced by an ultrashort laser oft05310211 s and
I 051 J/cm2. Values used for the melanosome areaL

51000 cm21, a51 mm, r051.35 g/cm3, and cv52.51 J/~g K!.
The bulk modulus and bulk thermal expansion coefficient used
those of graphite:B539.4 GPa anda52.9831025 K21. Gauge
pressure~in pascals! vs time~in seconds! for a point inside region I
(r 50.01a andr c50.027a). A series of tensile spikes is observed
this case.
C
tt

. E

. E

ys

e

l.
n-

e-
ils
u-
he

where short wavelength response is important. A mic
scopic investigation may reveal more interesting feature
this limit.

IV. CONCLUSION

We have investigated the pressures expected to re
when a laser pulse is incident on a spherical absorber u
both numerical and analytical techniques. We have looke
laser pulses of duration both greater and shorter than
mechanical relaxation time of the absorber. The press
profiles result from a uniform compressive pressure incre
throughout the absorber while the laser is on, along wit
tensile wave traveling in from the surface due to the exp
sion of the absorber. When the pulse is turned off the u
form compressive buildup stops, but a compressive w
traveling in from the surface commences.

In addition, reflections from the origin of first the tensi
wave, and then the compressive wave occur, sending w
of the opposite sign outward. These reflections superimp
their effects. When the mechanical impedance of the s
rounding medium is not matched to the absorber, the o
ward moving waves are partially reflected back into the
sorber, and partially transmitted.

The net effect of these different pressure transients
pends on their order of occurrence which is determined
the length of the laser pulse, and point of observation.
especial interest, we find that deep inside the absorber
,r c , there is a region where the concept of stress confi
ment does not hold. Even when the laser pulse duratio
much shorter than the mechanical relaxation time of the
sorber,t0!tc , ast0 is shortened the magnitude of the te
sile stress continues to increase. The large tensile stre
that develop at the center of the absorber may be of crit
importance in damaging or fracturing the absorber.
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